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Abstract

Newly developed low amylose wheats (Triticum aestivum L.) have unique processing characteristics,
and thus allow millers to blend defined levels of amylose in mixes requiring low-amylose flour. The
amount of amylose synthesised during grain fill is dependent on the expression of three structural
genes that encode isoforms of granule-bound starch synthase (GBSS). Lines possessing null alleles at
the three waxy (wx) loci produce starch that lacks amylose. While such wheats are readily identified
by iodine staining, their identification in wheat marketing and production systems would be facilitated
by the use of rapid, spectral methods. The present study was undertaken to determine the feasibility
of using near-infrared (NIR) spectroscopy to identify waxy wheats, and differentiate them from partial
waxy and wild-type phenotypes. Nearly 200 lines from each of two harvest years, with a range of
zero (waxy) to three (wild-type) active genes, were ground and scanned (1100-2500 nm) in NIR
reflectance. Linear or quadratic discriminant functions of the scores from principal component
decomposition cross validation demonstrated that within a crop year, near-perfect separation of fully
waxy (27 of 27 samples from Year 1, and 23 of 24 samples from Year 2 correctly identified) from
non-waxy lines (165 of 165 samples from either Year 1 or Year 2 correctly identified) was achievable.
Further classification among the three non-waxy classes was more difficult, with an average overall
accuracy of 60%. Misclassifications were most often assignments into neighbouring gene classes (e.g.
l-gene line assigned to the 2-gene class). The method should prove useful in the identification of
waxy wheats, or of blends of waxy and non-waxy cultivars.
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INTRODUCTION

Starch in plant endosperm is synthesised within
specialised organelles called amyloplasts. The two
macromolecules that comprise starch, namely
amylose and amylopectin, are chemically similar,
but differ in the degree of branching of the p-
glucosyl units, which are the core to these
molecules. Amylose, primarily composed of
straight chains of & (1 —4) linked D-glucosyl units,
is synthesised by an enzymatic process that differs
from the mechanism responsible for amylopectin
formation. The granule-bound starch synthase
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(GBSS), also known as the waxy protein', is
thought to be the primary enzyme responsible for
amylose synthesis. Because of the allohexaploid
nature of common wheat (Triticum aestivum L.),
there exist three unique loci (wx-41, wx-Bl, and
wx-D1) that contain the genes that encode GBSS.
Each locus encodes a separate isoform of GBSS.
In its native (wild-type) state, common wheat pos-
sesses all three isoforms. By natural mutation or
conventional breeding practices, some lines may
possess a null allele at one locus, while others may
carry two or, in the extreme case (very rare), three
null alleles. Generally, the greater the number of
active GBSS isoforms, the greater will be the
amylose content”®, Wheats that carry three null
alleles are termed ‘waxy’, a term borrowed from
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the literature on maize. Lines with one or two
null alleles are often referred to as ‘partial waxy’
wheats?®.

Waxy wheat breeding programs are currently
underway in Australia, Canada, Japan and the
United States. Possible uses of waxy wheats include
(1) a stock material for blending by wheat millers
for the purpose of achieving prescribed processing
characteristics, (2) flour for Asian noodlemaking,
and (3) a substitute for waxy maize starch for
industries such as modified food starches, paper-
making and adhesives’. Conventional methods,
such as SDS-PAGE for separation of GBSS iso-
forms as a means to identify waxy and partial waxy
lines®, are expensive, difficult and time consuming,
and therefore not readily amenable to either wheat
breeding programs or to various stages of the
wheat marketing and production system. Enzyme-
linked immunosorbent assay (ELISA) tests for
GBSS are possible>®; however, the samples still
require a preliminary starch extraction procedure.

Still another alternative to the assessment of
waxyness is the measurement of the actual con-
centration of amylose. Measurement of amylose
content in wheat starch is conventionally per-
formed by reliance on the reaction between amy-
lose and iodine to form a blue complex. By means
of standard curves from substances of known amy-
lose content (e.g. potato starch amylose), amylose
content is then determined either by colorimetry
or by potentiometric titration. The greatest dis-
advantage to this procedure is the length of time
needed for the formation of the amylose-iodine
complex. Even with the introduction of CaCl,
in a starch-iodine-dimethyl sulfoxide solution to
permit low-temperature (65-70 °C) gelatinisation,
and sonication to enhance solubilisation of the
gelatinised starch, analysis time is 30—60 min per
sample’. Furthermore, the precision of this pro-
cedure, as measured by the standard deviation of
repeated assays, is typically 2—4% for maize
samples of normal (<25% amylose) or high (up to
70%) amylose content’. Assuming a similar level
of precision for wheat, such an error would make
it difficult to successfully develop a secondary
procedure, such as near-infrared (NIR) reflectance
spectroscopy, for amylose content determination.
Because commercial wheat samples typically have
a narrower range of amylose content, such as
20-34%"°, quantifying the proportion of amylose
in starch by current chemical methods might be
less possible than categorising samples into levels
corresponding to the number of active GBSS

genes. Therefore, the objectives of this study were
three-fold: (1) to examine the feasibility of using
NIR reflectance spectroscopy to identify waxy
wheat samples, (2) to determine whether NIR
could differentiate wheat samples based upon the
number of active GBSS genes, and (3) to un-
derstand the chemical basis for the NIR clas-
sification models. Of particular interest is the
relationship between amylose content and gene
class, and whether this relationship is the sole basis
of the NIR classification model. A successful NIR-
based classification procedure has immediate ap-
plication in both plant breeding and wheat mar-
keting and production.

EXPERIMENTAL
Wheat

Year 1

Wild-type and partial waxy samples were drawn
from breeders’ advanced lines harvested in 1998
in field plots at Lincoln and Sidney, Nebraska,
U.S.A,, as a component of a USDA-ARS wheat
breeding program. Samples included partial waxy
and wild-type wheats derived from the following
crosses: MT8713/NE87612; NE90476/Ike;
NE90616/Ike; and SD88137/Ike. In addition,
samples of the cultivars ‘Redland’ (wild-type),
‘TAM202’ (wx-B1I null) and ‘Tke’ (wx-41 null + wx-
B1 null) also were included. Partial waxy and wild-
type lines were identified in the F; generation by
snapping heads, determining GBSS status by SDS-
PAGE on a portion of the grains from each head’,
and advancing the remaining portion to F,. Waxy
wheat lines were derived from the cross Kanto107/
BaiHuo. The waxy lines were derived from single
grains of F, seed (produced by greenhouse-grown
plants) that were visually identified for the waxy
trait and checked later with iodine solution. Be-
cause of poor adaptation to the Nebraska climate,
waxy samples were grown during 1998 in southern
California, outside Brawley, CA, U.S.A. Al-
together, the samples (n=192, ~10g each) pos-
sessed between 0 (waxy) and 3 (wild-type) active
GBSS genes. The number of samples assigned to
each gene class was as follows: 27 gene class 0
(triple null), 53 gene class 1 (wx-4/ null+ wx-B1
null), 73 gene class 2 (wx-41 null or wx-BI null)
and 39 gene class 3 (wild-type).
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Year 2

The samples for the second year were the progeny
of the first. Three fewer waxy samples were avail-
able for NIR analysis, making a total of 189
samples for Year 2. All samples were grown in
field plots in southern California.

Methodology

Wheat samples were held at room ambient con-
dition for several days before grinding. Each
sample was separately ground on a laboratory
scale cyclone grinder (Udy Corp., Ft. Collins, CO,
U.S.A)). Duplicate successive spectra
(1100-2498 nm, 2-nm wavelength resolution, 32
scans/spectrum) were made on separate fillings of
a standard ring cell loaded into a reflectance
spectrophotometer (Model 6500, Foss-NIR Sys-
tems, Inc., Silver Spring, MD, U.S.A.) equipped
with a rotating sample attachment. Reflected en-
ergy was referenced to corresponding readings
(collected before each sample) from a ceramic disk,
and stored as log,y (1/R). Prior to classification
modelling, the duplicate spectra of each sample
were averaged.

Apparent amylose content of Year 1 samples
was measured by iodine-binding blue complex
colorimetry, using slight modifications to the
method of Knutson and Grove®. To enhance pre-
cision of diluting the sample for complex for-
mation, the DMSO-iodine reagent volume was
adjusted by using a positive displacement pipettor.
A standard calibration curve was developed using
serial dilutions of a crude wheat amylose extract
obtained by the procedure of Klucinec and
Thompson'®. All samples were measured in du-
plicate, with the second set of assays completed
approximately 1 month after the first set. The
repeatability of the chemical procedure was
gauged by analysis of a control sample inserted
approximately every eight sample assays.

Classification modelling

SAS (SAS Institute Inc., Cary, NC, U.S.A.) pro-
cedures PRINCOMP, STEPDISC, and DIS-
CRIM" were sequentially used for (1) reducing
the spectral data to 15 principal components (PCs),
(2) identifying by stepwise search the components
that were most important in separating the gene
classes, and (3) determining by cross-validation
the optimal number of components to use in a
discriminant function for gene classification. All
samples from a given year were used in one set

for these three procedures. With the assumption
that PCs were multivariate normally distributed
in each gene class, and with the pooling of the
covariance matrix across the gene classes, a linear
discriminant function was used during the third
procedure. Alternatively, a quadratic discriminant
function also was used, based on no pooling of
the covariance matrices.

The novelty of this procedure compared to
previous research using principal component ana-
lysis (PCA) is that the components used in a
classification model were not restricted to be in
sequential order (i.e. PC 1, PG 2, . . ., PC 15).
Rather, the optimum discriminant function was
determined by a one-sample-out cross validation
procedure, whereupon the number and order of
the components were those which resulted in the
highest rate-of correctly classified samples, aver-
aged over the four gene classes.

RESULTS AND DISCUSSION

With the exception of baseline variation and a
multiplicative effect caused by differences in par-
ticle size and packing density, the spectra of all
samples were remarkably similar, as shown for
Year 1 in Figure 1. To accentuate any chemically
based spectral differences caused by gene class,
second derivatives (calculated as the second central
difference with a gap size of 10nm) were de-
termined for all waxy and wild-type samples
(gene classes =0 and 3, respectively). In the region
of greatest non-water spectral differences
(1950-2350 nm), the mean second derivative spec-
trum for each of these classes, along with a one-
sided standard deviation envelope (minus side for
the wild-type mean, plus side for the waxy mean),
indicated that spectral variation within a class was
often as large as that between classes (Fig. 2).
Upon reduction of the spectral data by PCA, a
stepwise search of the most important factors, in
which up to 10 PCs were permitted, resulted in
the selection of PC 1 as most useful in Year 1, as
well as in Year 2 (Tables I and II, respectively).
With the first PC alone, the overall classification
rate was nearly 50%, regardless of year or dis-
criminant function (i.e. linear, quadratic). In-
terestingly, the second most important factor (PC
6 for Year 1, PC 8 for Year 2) did not coincide
with that associated with the next greatest in
spectral variation. Based on band assignments in
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Figure 1

Raw log (1/R) spectra of all Year 1 samples. Samples have been grouped according to the number of active

granule-bound starch synthase (GBSS) genes (0-3) by displacing the spectra 0-1 units upward per number of active genes. For
active gene number 0, 1, 2, and 3, n=27, 53, 73, and 39 samples, respectively.
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Figure 2 Mean second derivative spectra of Year 1 GBSS
gene classes 0 and 3, limited to the spectral region
(1950-2350 nm) that showed the greatest variation with gene
class. Arrows point in the direction of increasing number of
genes. Also included are mean + 16 and mean —1G traces
for groups 0 and 3, respectively.

the literature'?, starch, protein, or their interaction
were prominent in PC 6 for Year 1 and PC 8 for
Year 2, especially near 1460 nm (N-H stretch

first overtone), 2050 nm (N-H stretch + amide II),
2130 nm (N-H stretch +C =0 stretch), 2260 nm
(O-H stretch + O-H deformation), and 2382 nm
(O-H deformation second overtone). With two
principal components and a linear discriminant
function, only one of the 27 waxy samples from
Year | could not be correctly classified. Similarly,
two waxy samples from Year 2 were incorrectly
classified. As more principal components were
added, the performance of the classification models
generally improved through the addition of the
seventh PC. At this number of PCs or greater, the
average percentage of correctly classified samples
ranged between 64 and 72, with little difference
between the choice of discriminant function or
year. By inspection, models using five to seven
PCs were judged to offer the best compromise
between accuracy and complexity of single-year
models. With seven PCs, the actual numbers of
correctly and incorrectly assigned samples by gene
class are shown in Tables III and IV for Years 1
and 2, respectively. For waxy wheat, no more than
two of the 27 samples from Year 1, and two of
the 24 samples from Year 2, were misclassified.
In each case, waxy misclassification occurred as
an assignment into the neighbouring gene class.
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Table I Average percentage of correctly classified samples by cross validation, based on linear or quadratic discriminant
function applied to principal component analysis scores

Year 1

Average percentage of correctly classified samples®

Number of principal Principal components Linear Quadratic
components selected” discriminant discriminant

1 1 42-3 516

2 1,6 59-2 57-1

3 1,6,8 58-8 541

4 1,6,8,4 59-7 56-4

5 1,6,8,4,2 56-8 59-4

6 1,6,8, 4,2, 10 651 64-0

7 1,6,8,4,2,10,7 680 66-0

8 1,6,8,4,2,10,7, 12 67-9 65-8

9 1,6,8,4,2,10,7,12,9 71:5 656
10 1,6,8,4,2,10,7,12,9, 11 71-2 63-3

*Value determined as the average of the percentage of correctly classified samples within each of the four active starch

synthase categories by leave-one-out cross validation.

> Stepwise selection used to determine best combination of principal components.

Table I Average percentage of correctly classified samples by cross validation, based on linear or quadratic discriminant
function applied to principal component analysis scores

Year 2

Average percentage of correctly classified samples®

Number of principal Principal components Linear Quadratic
components selected” discriminant discriminant

1 1 47-2 465

2 1,8 63-7 59-3

3 1,8,5 67-6 660

4 1,8,5,12 67-4 656

5 1,85 12,6 70-6 681

6 1,8,5,12,6,9 69-6 71-5

7 1,8,5,12,6,9, 13 70-4 72:2

8 1,8,5,12,6,9, 13, 11 69-0 71-6

9 1,8,5,12,6,9, 13, 11, 14 68-5 70-0
10 1,8,5,12,6,9,13, 11, 14, 10 682 71-7

*Value determined as the average of the percentage of correctly classified samples within each of the four active starch

synthase categories by leave-one-out cross validation.

" Stepwise selection used to determine best combination of principal components.

For the partial waxy (gene classes 1 and 2) and
wild-type wheats (gene class 3), misclassification
occurred with greater frequency than mis-
classification of waxy samples. Misclassification
usually represented assignment into the neigh-
bouring partial waxy or wild-type wheats, with
favour given to the wild-type wheats (class 3) in
the case of the gene class 2 samples. Samples
possessing two active genes were most difficult to
classify.

A scores plot for Year 1 PCs 1 and 6 [Fig. 3(a)]

and Year 2 PCs 1 and 8 [Fig. 3(b)] demonstrates
that spectral variation within the waxy samples
was at least as large as that variation among the
three other gene classes combined. The patterns
of the two scores plots are remarkably similar.
The samples tended to plot in the same location
from the first year to the second, suggesting that
the models were responding to an effect caused
by genotype more so than that caused by en-
vironment, especially considering the difference in
geographical origin (Nebraska vs California) of the
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Table III Cross validation of samples, using seven-factor
principal component models with linear or quadratic dis-
criminant function

Year 1 (n=192 total)

Assigned gene class®

Actual gene Discriminant

class function® 0 1 2 3

0 L 27 0 0 0
Q 25 2 0 0

1 L 0 40 11 2
Q 0 39 10 4

2 L 0 15 31 27
Q 0 15 3¢ 24

3 L 0 2 16 21
Q 0 3 16 20

* Gene class refers to the number of active genes (0 =triple
null allele, . . ., 3=wild-type) that encode granule-bound
starch synthase. Diagonal values (in bold) represent correct
assignments.

® L =linear, Q = quadratic.

Table IV  Cross validation of samples, using seven-factor
principal component models with linear or quadratic dis-
criminant function

Year 2 (=189 total)

Assigned gene class®

Actual gene Discriminant

class function® 0 1 2 3

0 L 22 2 0 0
Q 23 1 0 0

1 L 0 44 8 1
Q 0 42 9 2

2 L 0 13 35 25
Q 0 12 38 23

3 L 0 3 13 23
Q 0 1 14 24

*See footnote to Table III.
® L =linear, Q =quadratic.

non-waxy samples for Years 1 and 2. However,
this is not to say that Year 2 spectra exactly
resembled Year 1 spectra. A plot of the average
spectrum for each year reveals that the second
year’s spectra were additively and multiplicatively
offset from the first year’s spectra (Fig. 4). The
reason for this offset was most likely a difference in
moisture contents between the two years’ samples,
which tends to cause a non-linear scatter effect’.
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Figure3 Sample scores of the two most significant principal
components for classification of the number of active GBSS
genes. Plot symbols (0, 1, 2, 3) represent GBSS gene classes.
(@)= Year | (factors 1 and 6), (b)= Year 2 (factors 1 and 8).

To better estimate the performance of a clas-
sification model, the Year 2 samples were used as
a test set to which a model developed with Year
1 spectra was applied. Misclassifications were least
when the five-factor model with linear discriminant
function was used. Table V displays the test results
of applying a five-factor model, developed from
Year | spectra, to the Year 2 test set. As a spectral
pre-treatment to minimise overall yearly differ-
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Figure 4 Mean spectrum (solid line) for all samples in each year, with +one s.p. envelope (dotted line).

ences in the spectra, all spectra were mul-
tiplicatively scatter corrected' to the mean
spectrum of the Year 1 samples. The effect of the
scatter correction is displayed in Figure 5, whereby
most of the non-chemically based spectral differ-
ences between the two years is removed, as seen
by the overall similarity between the Year 1 mean
spectrum and the mean of the multiplicatively
scatter corrected Year 2 spectra. The major spec-
tral difference that remains lies in the
1900-2000 nm water band region. Although the
overall accuracy (62:2% correct on average) is
slightly less than those of the cross validations
within each year, the pattern for misclassification
was similar, this being that misclassified samples
were most often assigned to the neighbouring gene
class. Only one out of 165 non-waxy samples was
erroneously classified as waxy; however, six of the
24 waxy samples were misclassified.

In general, the possible reasons for the ability
of NIR to classify wheat by the number of active
GBSS genes include spéctral sensitivities to particle
size variation, amylose vs amylopectin con-
centration, and GBSS concentration. We suspect
that the last possibility, GBSS concentration, is
unlikely because of its low level of abundance
compared to the endosperm storage proteins pres-
ent within the ground sample and to the amylose
and amylopectin concentrations. In an effort to
measure protein content of starch granules from

Table V Test set results. Calibration model: linear dis-

criminant function applied to five-factor principal com-

ponents of multiplicative scatter corrected Year 1 spectra
(n=192)

Test set: Year 2 samples (n=189)

Assigned gene class®

Actual gene class 0 1 2 3
0 18 5 0 1
1 1 46 5 1
2 0 22 23 28
3 0 10 9 20

? See footnote to Table III.

different GBSS genotypes, no statistical differences
attributable to the GBSS group effect were noticed,
with each being approximately 0:2% protein
(Graybosch, unpublished). Therefore, focus was
given to the two other possibilities.

Short of actual physical measurement of the
ground wheat particles, the particle size effect can
be investigated by developing an NIR model that
has incorporated a spectral pre-treatment to re-
duce the effect of particle size variation (such as
multiplicative scatter correction), then comparing
the classification results of this new model to those
of the non-scatter-corrected model. One could
reason that the particle size distribution has a large
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Figure 5 Mean spectrum for all samples in Year 1 and mean spectrum for all samples in Year 2 spectra that were

multiplicatively scatter-corrected to the Year 1 mean.

effect on GBSS classification provided that the
scatter-corrected NIR model results in a poorer
grouping of the samples. Conversely, if little
difference in classification ability occurs between
the two models, the particle size effect would likely
not be the primary basis for GBSS classification
by NIR. When this experiment was performed on
Year 1 samples, the results for the scatter-corrected
model (average overall cross validation accuracy
ranging from 47-2 to 72:6%, depending on the
number of PCs, data not shown) were equivalent
to the non-corrected model (42:3 to 71-2% range,
Table I). Hence, it seems likely that GBSS clas-
sification by NIR is most likely based on a spectral
sensitivity to amylose, amylopectin, or their inter-
action with other chemical constituents. Starch
lipid content also might have contributed to NIR
classification. Yasui ef al.'®> found starch lipid con-
tent of waxy wheats derived from Kantol107 and
BaiHuo to be significantly less than their non-
waxy parents. Recently, the same researchers'
found total grain starch to be higher, and total
grain fat and PB-glucan content to be elevated, in
two waxy mutants derived from Kantol07. In the
latter case, however, the waxy lines were induced
by mutagenesis, so it is possible that the observed
changes in grain biochemical components might
have been derived from additional mutations. Al-
though not evaluated in the current study, B-

glucan content is to a certain extent measurable
by NIR reflectance spectroscopy'’, particularly at
the longer (>2200 nm) wavelengths'®,

If it is assumed that the spectral basis of the
classification models is primarily associated with
the level of amylose, the ultimate accuracy of such
models is limited to the extent of the relationship
between GBSS gene class and amylose content.
The actual relationship, as shown for Year 1
samples in Figure 6, is such that only the waxy
wheats had amylose contents distinctly different
than the other gene classes. Some samples assigned
to the gene class 0 (waxy) had amylose contents
ranging from 3-9%. These samples could have
encountered a low level of outcrossing in field
plots, been the result of mechanical mixtures dur-
ing harvest operations, or might represent ‘leaky’
backgrounds in which either some limited amylose
synthesis occurs or some long-chain amylopectin
molecules bind iodine. Indeed visual inspection of
waxy seed stained with iodine demonstrated some
purplish foci, generally in the area around the
crease in the grain. The variation in amylose
content within each of the other three classes, with
a standard deviation ranging from 1:75% (gene
class 2) to 2:19% (gene class 3) was sufficiently
large to cause overlap across these classes, con-
sidering the narrow range of class means (187
to 22:0%). This overlap is caused by a dosage
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Figure 6 Relationship between amylose content and gene
class for Year 1, shown as gene class means with error bars.
Also included are the cross validation predictions of the seven
factor with linear discriminant function model (summarised
in Table III), with GBSS gene class (0, 1, 2, or 3) labelled
above each cluster. Mean +5.p. (@); misclassified individual
sample (*); correctly classified individual sample (-).

compensation response that occurs when one or
more null alleles for GBSS are present, resulting
in compensation by the remaining active genes
to elevate their production of GBSS**. Recent
research has demonstrated differential effects
among the various active waxy alleles on amylose
content'**, Amongst the three possible double null
classes, and within defined environments, some
significant differences were observed. However,
across environments, amylose contents of these
genetic classes overlapped. In addition the differ-
ences were so slight that the changes of NIR
differentiating the three possible single active
GBSS genotypes seems remote.

Cross validation assignments from the seven-
factor linear discriminant function model (Table
III) are also displayed in Figure 6 for the purpose
of identifying trends in misclassification. These
trends are identified by examining an individual
sample’s amylose content with respect to the dis-
tribution of amylose contents within the sample’s
gene class. Often a misclassified sample had an
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Figure 7 Cross validation predictions for a partial least
squares 12-factor NIR model.

amylose content that was skewed in the direction
toward the gene class to which the sample was
erroneously assigned. When discriminant analysis
was based on the chemically determined value for
amylose content, the overall average classification
accuracy was 70:0%, which is marginally higher
than the 68:0% level for the discriminant analysis
based on seven PCs (T'able III). Therefore, with the
assumption that all power of an NIR discriminant
model for gene class is primarily dependent on
amylose content, further improvements in model
accuracy may only be marginal.

Repeatability error of the reference chemical
analysis procedure for amylose content, defined as
the standard deviation of the amylose content
readings on a control sample (measured 53 times),
was 2:48%. The reason this value is greater than
the standard deviations of amylose content within
the gene classes is most likely because the latter
values were calculated using averages from du-
plicate assays. Despite the large repeatability error
of the reference procedure, a 12-factor partial least
squares calibration for amylose content produced
a standard error of cross validation of 1:57%
(Fig. 7). This error is slightly higher than typical
standard errors of performance of about 1:0% that
have been reported for rice amylose content NIR
models”*’. Additional research is needed to
identify and quantify the degree of spectrally
sensed features (from lipid, B-glucan, and protein



38 S. R. Delwiche and R. A. Graybosch

components) beyond that of amylose content, that
might contribute to an NIR classification model
for gene class.

CONCLUSIONS

NIR reflectance spectroscopy can be used to dis-
criminate waxy wheat from partial-waxy (single
or double null alleles) or wild-type wheat with
near-perfect accuracy. Thus, waxy wheat samples
can be easily identified both in breeding programs,
and at various stages of the wheat production and
marketing system, by instrumentation that already
is used to measure protein content and grain
hardness. Using the best NIR model, partial waxy
and wild-type lines can be grouped according
to the correct number of active GBSS genes at
approximately 60% accuracy. The ability of NIR-
based models to classify wheat lines according to
the number of active GBSS genes appears to be
due to spectrally sensed differences in amylose and
amylopectin. However, reliance on amylose vs
amylopectin concentrations prevents NIR models
from achieving perfect GBSS classification ac-
curacy of non-waxy lines because of overlap in
amylose content between these gene classes.
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